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Scaling properties of growing noninfinitesimal perturbations in space-time chaos
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We study the spatiotemporal dynamics of random spatially distributed noninfinitesimal perturbations in
one-dimensional chaotic extended systems. We find that an initial perturbation of finite gimawvs in time
obeying the tangent space dynamic equatifngmpunov vectors up to a characteristic time,(ep) ~b
—(1/\madIn(€&), whereknax is the largest Lyapunov exponent abds a constant. For times<t,, perturba-
tions exhibit spatial correlations up to a typical distageet? For times larger thaty, finite perturbations are
no longer described by tangent space equations, memory of spatial correlations is progressively destroyed, and
perturbations become spatiotemporal white noise. We are able to explain these results by mapping the problem
to the Kardar-Parisi-Zhang universality class of surface growth.
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I. INTRODUCTION [10]. We find that, due to the finiteness of the initial error,
] ] o . there is a characteristic time scaléey) ~b—(1/\y20IN(€),
A standard tool for studying chaotic behavior in dy”am"where)\maxis the largest Lyapunov exponesg,is a measure

cal systems is the computation of the characteristiGy e injtial size of the perturbation, ads a constant. For
Lyapunov exponents, which measure the typical exponentigjnest <+, the dynamic evolution of a finite perturbation is

growth rate of an infinitesimal disturbanfk?2]. The charac- governed by the Lyapunov vector. In this regime, finite per-

teristic Lyapunov exponents in extended systems are definggtions become spatially correlated up to a typical length
in a similar way to their low-dimensional counterpart and caleé~tZ, wherez is the dynamic exponent of the KPZ
can be calculated from the linearization of the equations Oﬁroblem(zx:’3/2 for one-dimensional systemsHowever, for

motion [3,4]. The main point is that the growth of an infini- yiegt~t  any finite perturbation leaves the tangent space

tesimal perturbation is described by the linear equations fo&nd is no longer described by the Lyapunov vectors. In this
the tangent space, the so-called Lyapunov vectseg be- Jd

. ) ate regime, memory of spatial correlations is progressively
low). However, for many practical purposes the dynamics o

infinitesimal . el Y ¢ estroyed and perturbations actually become white noise in
infinitesimal perturbations may be irrelevant as indicators o space and time. Our approach provides new tools for study-

for ins_tance;], the pre_dic';]ab?lit_y tilme. 'dr?‘?'eed'_ inf_m_any rﬁalis'[icing chaotic extended systems by allowing us to fully describe
situations the error in the initial conditions is finite. The Im- o ghread of correlations, to estimate the spatial extent of

portant fact is that the evolution of finite errors is not con- ., eations of the chaotic field, and to measure the effective
fined to the tangent space, as defined by the growth of lin; ,mper of degrees of freedom.

earized perturbations, but is controlled by the complete \yg eyemplify our results by means of numerical simula-
nonlinear dynamics. A good example with important practi-jjons of coupled map lattices in one dimension, which are

cal application occurs in weather forecasting, where ongjmpyie model systems exhibiting space-time chaos and con-
deals with the whole Earth’s atmosphere—an extremely,oniant a5 far as the computing time is concerned. We con-

high—dimensional system in which initial conditions can .besider a coupled map array consistinglo€haotic oscillators
determined only with limited accuracy. The effects of finite

iven b
perturbations have recently been studied in the context o? y
fully developed turbulencgb]. In order to deal with realistic ux,t+1) = vf(u(x+ 1,t)) + vf(u(x—1,t))
perturbations, the concept of finite-size Lyapunov exponents
has been found to be useful to analyze predictability in high- + (1 - 2)f(ux.), 1)

dimensional chaotic systenf4, ). _ - wherex=1,2, ... L, f(u) is a chaotic mapy is the coupling

_In this paper, we study the dynamics of random spatiallyconstant, and periodic boundary conditions are imposed. We
distributed finite-size errors in chaotic extended systems andaye fixed the coupling te=1/3 in all thesimulations pre-
focus on their propagation dynamics. We argue that, after @ented in this paper. We have carried out simulations for two

suitable transformation of variables, the dynamics of finitegjterent choices of the map, the chaotic logistic nfdp)
perturbations can be interpreted as a kinetic roughening Pra:4y(1-u), 0<u<1 and the tent mag(u)=1-2u-1/2|

cess in the Kardar-Parisi-Zhan@KPZ) universality class O=u=1. For the sake of brevity, all the results we present

below correspond to coupled logistic maps, but similar re-
sults were obtained for the tent map.
*Electronic address: lopez@ifca.unican.es The dynamics ofnfinitesimalperturbations of a turbulent
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stateu’(x,t) can be studied by linearizing the evolution equa- 0
tion (1). This leads to the tangent space equations or
Lyapunov vectordu(x,t) evolution equation A
Su(x,t+1) °\2 20

= vf U+ LHJouGc+ L + of [ux - 1Loloux -1, 34

+ (1= 20)f'Tu(x,H]du(x,t) + O[(8u)?], (2
where f'[u(x,t)]= df(y)/dy|yxy. This implies to solve si- - 7.51
multaneously the fieldu(x,t) evolution equation(1). The r% st
Lyapunov vector is defined in the linear approximation, <
when higher-order correctior@[(su)?] are neglected. 2.5}
The analysis of infinitesimal perturbations allows us to . .

compute several indicators characterizing the chaotic systen 00 50 100 150
including the whole spectrum of Lyapunov exponents, and to t

investigate how this depends on system gi2¢,6. How- FIG. 1. N cal its for th i ¢ finite-si
ever, as explained above, there are indeed many situations "'+ - Numerical results for the propagation of finite-size er-

where the Lyapunov analysis has no relevance due, for inors in coupled logistic maps. Upper panel shows the ensemble

. - averaged amplitude factde(t)) vs time for perturbations starting
stance, to the finite nature of the initial errors. with initial amplitudes ofey=103, 105, 107, 10°°, 101, and
10718 (from top to bottomy in 1D lattices ofL=1024 sites. Results

Il. SCALING OF FINITE-SIZE PERTURBATIONS were averaged over 600 different initial conditions. Lower panel
' shows the variance?(t) for the same initial perturbations as before

Let us now consider the evolution of random finite-sizeand €, decreasing from IG (leftmost curve to 1072 (rightmost
perturbed trajectories in our model syst€hy Given an ini-  curve).
tial conditionu®(x,0), the solutionu®(x,t) is determined by
computing Eq(1) for a numbert of time steps. This is our
reference trajectory and we are interested in the evolution ohe average amplitude factor grows exponentially in time
finite perturbations around that reference solution. For rea€(t) = € exp(At), where A=0.343+0.005. We demonstrate
sons that will become clear below, we find it convenient tobelow that\ indeed corresponds to the maximal Lyapunov
introduce now what we call thamplitude factore(t) as the  exponent. For longer time$>t,(e), the amplitude factor
spatial geometrical mean value of a perturbation, saturates to a constant value. Both the saturation constant
. and the maximal Lyapunov exponent are independent of the
B " initial perturbation sizee,. However, the saturation times
ety = H | QUGB 3 t«(€y) increase as the size of the initial perturbatignbe-
“t comes smaller. The characteristic time sdaleorresponds
As we shall see below, the amplitude factor turns out to be @ the crossover time at which the dynamics of a finite-size
very important quantity which contains the information perturbation depart from the linear evolutiofi.e., the
about the dominant exponential growth rate. Lyapunov vectorsgiven by Eq.(2). This crossover occurs
Since we are interested here in the propagation of redbecause Lyapunov vectors describe only the behavior of
(noninfinitesima) errors, we should avoid linearization of strictly infinitesimal perturbations. One can estimate
Eg. (1). Instead, we compute the trajectories generated byoughly as the time at whick(t) reaches somé, so that the
iterating Eq. (1) for an ensemble of initial conditions higher-order term®©[(8u)?] cannot be neglected in the evo-
u(x, 0)=u’(x, 0) + du(x,0), where du(x,0) is a random finite  |ution equation(2). This crossover takes place at a typical
perturbation of initial amplitude(t=0)=¢,. For each itera- time t.(ey) ~ (1/\)In(8)—(1/\)In(ey). Therefore, for times
tion of the lattice (1), the difference du(x,t)=u(x,t)  t>t,(ey), nonlinear corrections, due to finiteness of the ini-
-u9(x,t) between the reference trajectory and every one ofial perturbation, come into play and drive errors out of the
the perturbed solutions is calculated. Although the disturtangent space. From then on, the linear approximation cannot
bances are initially random and uncorrelated in space, adescribe the evolution of errors. One then expects that
time goes by, they grow and get spatially correlated. The, (e — > ase;— 0.
statistical fluctuations of errors can be characterized by Besides exponential growth, spatial correlations are dy-
studying the ensemble of finite perturbatiof&i,(x,t)}.;,  namically generated during the evolution of the perturbation.
which correspond t& independent realizations of the initial Correlations contain information about the subleading
perturbation. Lyapunov exponents and thus also contribute to the pertur-
In Fig. 1 (upper panel we plot Ine(t)) versus time for bation size growth. The important role of correlations can be
different values of the initial perturbation amplitudg,  better realized after subtraction of the dominant exponential
where(---) stands for average over realizations of the initialgrowth component given by(t). We find that a very useful
perturbation. One can immediately see that there exists mdicator is given by theeducedperturbationssr(x,t) that
characteristic time scalg(ep) such that for times<t,(ey),  we define as
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FIG. 2. The same numerical results for the varian@é) as FIG. 3. Time behavior of the correlation function for lattice sites
those in Fig. 1 are plotted in the main panel in log-log scale to showpeparated at different distandes8 (O), 1=16 (L)), 1=64 (<), and
the power-law behavior In2(t) ~t28. The straight line has a slope !=185(>) in an array ofL =1024 coupled maps.

0.60 and is plotted to guide the eye. The inset shows the mean-

square fit of the characteristic time scaléey) obtained from the times t;,t,<t.. However, as shown in Fig. 3, correlations

saturation times of the amplitude facteft). The slope of the pecome progressive|y smaller for timés t,. This again

straight line is 1X=2.865). demonstrates that the effect of having initially finite pertur-

bations is to introduce a characteristic tirpgée;) marking

du(x,t) the typical time it takes for the system to depart from tangent

wa (4) space (with the building-up of correlationsto nonlinear
evolution (uncorrelated errojs For times larger that,, the

where the dominant exponential growth is globally removedPerturbation spatial correlations are progressively destroyed,
and one is left with the effect of correlations. For randomas can be seen from the decay of the correlati@(ist) in
initial errors, i.e., random spatially distributed initial condi- Fig. 3. Further Fourier spectrum analygikl] shows that
tions, the averagésr(x,t)) vanishes, wheré --) stands for ~ €rrors actually become indistinguishable from white noise.
the average over realizations of the initial perturbation and
the overbar is a spatial average. Thus, statistical fluctuations
of the reduced perturbations are measured by the variance In order to make a theoretical interpretation of our nu-
d2(t)=(r(x,1)?. As we shall see belowy(t) gives infor- merical results, in particular the existence of scaling behav-
mation about the growth of perturbations due solely tolor, we can resort to the Hopf-Cole transformation, first pro-
correlations. posed by Pikovsky and Politi for the actual Lyapunov vectors
In Fig. 1 (lower pane), we show our numerical results for [12,13, that allows us to link spreading of errors to nonequi-
the variance of the reduced perturbations, &gy. The vari-  librium sgrface growth. We find that thg dynamlcs of_f|n|te
anceo?(t) grows aso2(t) ~exp(t?) for timest<t,, i.e., be-  Perturbations can also be seen as a kinetic roughening pro-
fore saturation occurs due to finiteness of the initial distur-CeSS Of the surface defined byx,t)=In[au(x,t)|. This is &
bance. This scaling behavior is better seen in Fig. 2, wher¥ery useful transformation that allows us to borrow some
we plot in log-log scale I?) vs time and the exponerg ~ Well-known results in the field of nonequilibrium surface
=0.30+0.05(see Fig. 2 As before, this rapid growth occurs 9rowth. Indeed, Politi and Pikovsij.2,13 have shown that
for timest<t, when the dynamics of disturbances are well€70rS in many extended systems lead to a surface growth
described by the Lyapunov vectors. One can determine thef0Cess in the universality class of KRZO]. o
crossover time, from Fig. 1, either by measuring the satu- _ L&t us first consider the amplitude factor defined in Eq.
ration times ofe(t) (upper panelor by measuring the time (3) and show that it is related to the average surface velo-
shift of the maxima ob2(t) (lower pane). Results are shown City. We can write |au(x,H|=exih(x,H)] and thus «(t)
in the inset of Fig. 2, where a straight line fit of the data leads=exf (1/L)2Z1h(x,t)]=exdh(t)]. We then obtain that the
to t.(e9) =b—(1/N\)In(€y) with b a constant. The slope of the amplitude factor must grow as(t) ~ ey eXp(Amat), Where
fit 1/x=2.86+0.05 is in excellent agreement with our previ- \yax is the largest Lyapunov exponent and corresponds in
ous determination ok ~0.34 from the exponential growth this mapping to the surface velocity(t)=Amnat+h(0)
of the amplitude factok(t) ~exp(At). [12,13. Direct measures of the average surface velqgiot
The magnitude and extent of spatial correlations can bghown) are in excellent agreement with our above-discussed
measured by using the site-site correlation funct®h,t)  estimations ofA. As an independent check, we have also
=(0r (X, 1) 8 (X +1,1))/(8r (Xo,1)?). The magnitude of spatial measured the largest Lyapunov exponent by standard tech-
correlations increases in timd(l,t;) <G(l,t,) if t;<t, for  niques[14,15.

or(x,t) =

IIl. KINETIC ROUGHENING PICTURE

056224-3



LOPEZet al. PHYSICAL REVIEW E 70, 056224(2004)

Also the time behavior of the variance of the reducedexp(t?®) scaling observed in Fig. 2, bearing in mind the limi-
perturbations shown in Fig. 2 can be linked to surface scalingation of the approximatioii6). It is worth mentioning that
properties. From the surface definitibfx,t)=In|su(x,t)| we  all the numerical results presented here are obtained for sys-
havea(t,L) =(exd 2y(x,0)]), wherey(x,t)=h(x,t)-h(t). We  tem sizes such that <t;, so that the existence of could be
can now proceed and calculai explicitly by considering ~ cléarly observed.
the cumulant generating function of the stochastic varigble
given by ®(s)=In{exp(isy)) [16], wherei is the imaginary V. CONCLUSIONS
unit. This generating function can be expanded in a power
series of the argumemstand then evaluated at-2i to ob-
tain an exact expression for the variance

We have studied the spatiotemporal dynamics of finite-
size perturbations in extended systems exhibiting chaos. We
have introduced what we call the amplitude fact@y in Eq.
* <<37>> (3) and showed that this quantity is directly related to the
A(t,L) =exp X 2=, (5  maximal Lyapunov exponent and exhibits nice scaling prop-
= O erties. The amplitude factor allows us to remove in a simple
where ((y")) are the cumulants of [16]. In general, no @and self-consistent way the dominant growth component of
closed simple formula exists for the cumulant of ordef a ~ the perturbation at every time step, so that spatial correla-
given variabley, but the first cumulants are given kgyy) ~ tons can be determined more easily. At variance with infini-
=(y, (()72>>:<y2>—®2, and <<F>>:<F>—2<y2>@+2@3, tesimal perturbations, finite-size errors lead to a characteris-

etc. [16]. In our case,(y)=0 and the second cumulant tic time scalet.(ep) signaling the departure of the finite

(y2)=WA(t,L) corresponds to the surface widih2(t,L) perturbation from the linear approach. For tintest,, the
e ' evolution is nonlinear and spatial correlations are destroyed.

=([h(x,t)=h]?. To leading order, we have We have found that the perturbation variance grows-@5s
F(t,L) ~ exg 2WA(L,L)]. (6) ~ exp(t?®), once the contribution of the largest growth rate is
removed. We have explained this behavior by representing
Higher-order cumulants are also finite, but their contributionthe error growth as a kinetically rough 1D KPZ surface.
to the series gets smaller asncreases. We have checked  The interpretation of the exponentially growing errors
numerically that including the third and fourth cumulants sy(x,t) as a roughening surfadgx, t)=In|du(x,t)| has many
shifts the exponent by less than 10%. Therefore, withildyantages since it allows us to translate the problem of ana-
this somewhat crude approximation, E(f), we expect |yzing deterministic chaotic fluctuations into the simpler
to have an estimation of theffectivescaling exponent of  framework of kinetic roughening of the associated surface
o~ exp(t?) with less than a 10% error bar. A clarification is nx,t). The scale-invariant character of the surface fluctua-
now in order. For systems in which the largest Lyapunovjons leads to simple power-law behavior of the relevant
exponent\ — 0, one would expect to have larger crossoverquantities that can be characterized by a few critical expo-
timest,, so that higher-order cumulants may eventually benents. As a byproduct, this leads in a rather simple way to an
come relevant, yielding corrections to K@). In this sense, estimation of the spatial extent of correlations at timas
the scaling picture has to be considered as approximat%wtz, wherez=3/2 is thedynamic exponent of the KPZ
However, the scaling approach is consistent for hyperchaotigroblem. Further results of practical application, including
systems, such as those we are interested in here, in which n@fe relevance for the predictability problem of the propaga-
only is the leading Lyapunov exponent finite, but a seriegjon of finite-size errors and bred vectors, as used in the

of finite positive Lyapunov exponents exists whose numbegontext of weather forecastirfg—9], will be published else-
increases with the system size. where[11].

The ansatz of a KPZ behavior for the surfdtéhen im-
plies that the width should scale &§(t,L)~t? for times
t<tyL) and saturates to a size-dependent vaNW#t,L)
~L*for t>t4(L), whereB and « are the growth and rough- This work was supported by the CICY(Bpain through
ness exponent, respectively, that are known to take the valuésrants No. BFM2000-0628-C03-02 and No. BFM2003-
B=1/3 anda=1/2 for the KPZuniversality class in one 07749-C05-03 as well as the EU Commission through Grant
dimension[10,17. This is consistent with the approximate No. OCCULT IST-2000-29683.
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