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We study the spatiotemporal dynamics of random spatially distributed noninfinitesimal perturbations in
one-dimensional chaotic extended systems. We find that an initial perturbation of finite sizee0 grows in time
obeying the tangent space dynamic equations(Lyapunov vectors) up to a characteristic timet×se0d,b
−s1/lmaxdlnse0d, wherelmax is the largest Lyapunov exponent andb is a constant. For timest, t×, perturba-
tions exhibit spatial correlations up to a typical distancej, tz. For times larger thant×, finite perturbations are
no longer described by tangent space equations, memory of spatial correlations is progressively destroyed, and
perturbations become spatiotemporal white noise. We are able to explain these results by mapping the problem
to the Kardar-Parisi-Zhang universality class of surface growth.
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I. INTRODUCTION

A standard tool for studying chaotic behavior in dynami-
cal systems is the computation of the characteristic
Lyapunov exponents, which measure the typical exponential
growth rate of an infinitesimal disturbance[1,2]. The charac-
teristic Lyapunov exponents in extended systems are defined
in a similar way to their low-dimensional counterpart and
can be calculated from the linearization of the equations of
motion [3,4]. The main point is that the growth of an infini-
tesimal perturbation is described by the linear equations for
the tangent space, the so-called Lyapunov vectors(see be-
low). However, for many practical purposes the dynamics of
infinitesimal perturbations may be irrelevant as indicators of,
for instance, the predictability time. Indeed, in many realistic
situations the error in the initial conditions is finite. The im-
portant fact is that the evolution of finite errors is not con-
fined to the tangent space, as defined by the growth of lin-
earized perturbations, but is controlled by the complete
nonlinear dynamics. A good example with important practi-
cal application occurs in weather forecasting, where one
deals with the whole Earth’s atmosphere—an extremely
high-dimensional system in which initial conditions can be
determined only with limited accuracy. The effects of finite
perturbations have recently been studied in the context of
fully developed turbulence[5]. In order to deal with realistic
perturbations, the concept of finite-size Lyapunov exponents
has been found to be useful to analyze predictability in high-
dimensional chaotic systems[4,5].

In this paper, we study the dynamics of random spatially
distributed finite-size errors in chaotic extended systems and
focus on their propagation dynamics. We argue that, after a
suitable transformation of variables, the dynamics of finite
perturbations can be interpreted as a kinetic roughening pro-
cess in the Kardar-Parisi-Zhang(KPZ) universality class

[10]. We find that, due to the finiteness of the initial error,
there is a characteristic time scalet×se0d,b−s1/lmaxdlnse0d,
wherelmax is the largest Lyapunov exponent,e0 is a measure
of the initial size of the perturbation, andb is a constant. For
times t, t×, the dynamic evolution of a finite perturbation is
governed by the Lyapunov vector. In this regime, finite per-
turbations become spatially correlated up to a typical length
scalej, t×

z, wherez is the dynamic exponent of the KPZ
problem(z=3/2 forone-dimensional systems). However, for
times t. t×, any finite perturbation leaves the tangent space
and is no longer described by the Lyapunov vectors. In this
late regime, memory of spatial correlations is progressively
destroyed and perturbations actually become white noise in
space and time. Our approach provides new tools for study-
ing chaotic extended systems by allowing us to fully describe
the spread of correlations, to estimate the spatial extent of
correlations of the chaotic field, and to measure the effective
number of degrees of freedom.

We exemplify our results by means of numerical simula-
tions of coupled map lattices in one dimension, which are
simple model systems exhibiting space-time chaos and con-
venient as far as the computing time is concerned. We con-
sider a coupled map array consisting ofL chaotic oscillators
given by

usx,t + 1d = nf„usx + 1,td… + nf„usx − 1,td…

+ s1 − 2ndf„usx,td…, s1d

wherex=1,2, . . . ,L, fsud is a chaotic map,n is the coupling
constant, and periodic boundary conditions are imposed. We
have fixed the coupling ton=1/3 in all thesimulations pre-
sented in this paper. We have carried out simulations for two
different choices of the map, the chaotic logistic mapfsud
=4us1−ud, 0øuø1 and the tent mapfsud=1−2uu−1/2u,
0øuø1. For the sake of brevity, all the results we present
below correspond to coupled logistic maps, but similar re-
sults were obtained for the tent map.
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stateu0sx,td can be studied by linearizing the evolution equa-
tion (1). This leads to the tangent space equations or
Lyapunov vectordusx,td evolution equation

dusx,t + 1d

= nf8fusx + 1,tdgdusx + 1,td + nf8fusx − 1,tdgdusx − 1,td

+ s1 − 2ndf8fusx,tdgdusx,td + Ofsdud2g, s2d

where f8fusx,tdg= udfsyd /dyuusx,td. This implies to solve si-
multaneously the fieldusx,td evolution equation(1). The
Lyapunov vector is defined in the linear approximation,
when higher-order correctionsOfsdud2g are neglected.

The analysis of infinitesimal perturbations allows us to
compute several indicators characterizing the chaotic system,
including the whole spectrum of Lyapunov exponents, and to
investigate how this depends on system size[3,4,6]. How-
ever, as explained above, there are indeed many situations
where the Lyapunov analysis has no relevance due, for in-
stance, to the finite nature of the initial errors.

II. SCALING OF FINITE-SIZE PERTURBATIONS

Let us now consider the evolution of random finite-size
perturbed trajectories in our model system(1). Given an ini-
tial conditionu0sx,0d, the solutionu0sx,td is determined by
computing Eq.(1) for a numbert of time steps. This is our
reference trajectory and we are interested in the evolution of
finite perturbations around that reference solution. For rea-
sons that will become clear below, we find it convenient to
introduce now what we call theamplitude factorestd as the
spatial geometrical mean value of a perturbation,

estd ; p
x=1

L

udusx,tdu1/L. s3d

As we shall see below, the amplitude factor turns out to be a
very important quantity which contains the information
about the dominant exponential growth rate.

Since we are interested here in the propagation of real
(noninfinitesimal) errors, we should avoid linearization of
Eq. (1). Instead, we compute the trajectories generated by
iterating Eq. (1) for an ensemble of initial conditions
usx,0d=u0sx,0d+dusx,0d, wheredusx,0d is a random finite
perturbation of initial amplitudeest=0d=e0. For each itera-
tion of the lattice (1), the difference dusx,td=usx,td
−u0sx,td between the reference trajectory and every one of
the perturbed solutions is calculated. Although the distur-
bances are initially random and uncorrelated in space, as
time goes by, they grow and get spatially correlated. The
statistical fluctuations of errors can be characterized by
studying the ensemble of finite perturbationshdunsx,tdjn=1

N ,
which correspond toN independent realizations of the initial
perturbation.

In Fig. 1 (upper panel), we plot lnkestdl versus time for
different values of the initial perturbation amplitudee0,
wherek¯l stands for average over realizations of the initial
perturbation. One can immediately see that there exists a
characteristic time scalet×se0d such that for timest, t×se0d,

the average amplitude factor grows exponentially in time
estd<e0 expsltd, where l=0.343±0.005. We demonstrate
below thatl indeed corresponds to the maximal Lyapunov
exponent. For longer times,t. t×se0d, the amplitude factor
saturates to a constant value. Both the saturation constant
and the maximal Lyapunov exponent are independent of the
initial perturbation sizee0. However, the saturation times
t×se0d increase as the size of the initial perturbatione0 be-
comes smaller. The characteristic time scalet× corresponds
to the crossover time at which the dynamics of a finite-size
perturbation depart from the linear evolution(i.e., the
Lyapunov vectors) given by Eq.(2). This crossover occurs
because Lyapunov vectors describe only the behavior of
strictly infinitesimal perturbations. One can estimatet×
roughly as the time at whichestd reaches somed, so that the
higher-order termsOfsdud2g cannot be neglected in the evo-
lution equation(2). This crossover takes place at a typical
time t×se0d,s1/ldlnsdd−s1/ldlnse0d. Therefore, for times
t. t×se0d, nonlinear corrections, due to finiteness of the ini-
tial perturbation, come into play and drive errors out of the
tangent space. From then on, the linear approximation cannot
describe the evolution of errors. One then expects that
t×se0d→` ase0→0.

Besides exponential growth, spatial correlations are dy-
namically generated during the evolution of the perturbation.
Correlations contain information about the subleading
Lyapunov exponents and thus also contribute to the pertur-
bation size growth. The important role of correlations can be
better realized after subtraction of the dominant exponential
growth component given byestd. We find that a very useful
indicator is given by thereducedperturbationsdrsx,td that
we define as

FIG. 1. Numerical results for the propagation of finite-size er-
rors in coupled logistic maps. Upper panel shows the ensemble
averaged amplitude factorkestdl vs time for perturbations starting
with initial amplitudes ofe0=10−3, 10−5, 10−7, 10−9, 10−11, and
10−13 (from top to bottom) in 1D lattices ofL=1024 sites. Results
were averaged over 600 different initial conditions. Lower panel
shows the variances2std for the same initial perturbations as before
and e0 decreasing from 10−3 (leftmost curve) to 10−13 (rightmost
curve).
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drsx,td =
dusx,td

estd
, s4d

where the dominant exponential growth is globally removed
and one is left with the effect of correlations. For random
initial errors, i.e., random spatially distributed initial condi-
tions, the averagekdrsx,tdl vanishes, wherek¯l stands for
the average over realizations of the initial perturbation and
the overbar is a spatial average. Thus, statistical fluctuations
of the reduced perturbations are measured by the variance
s2std=kdrsx,td2l. As we shall see below,sstd gives infor-
mation about the growth of perturbations due solely to
correlations.

In Fig. 1 (lower panel), we show our numerical results for
the variance of the reduced perturbations, Eq.(4). The vari-
ances2std grows ass2std,expst2bd for times t, t×, i.e., be-
fore saturation occurs due to finiteness of the initial distur-
bance. This scaling behavior is better seen in Fig. 2, where
we plot in log-log scale lnss2d vs time and the exponentb
=0.30±0.05(see Fig. 2). As before, this rapid growth occurs
for times t, t× when the dynamics of disturbances are well
described by the Lyapunov vectors. One can determine the
crossover timet× from Fig. 1, either by measuring the satu-
ration times ofestd (upper panel) or by measuring the time
shift of the maxima ofs2std (lower panel). Results are shown
in the inset of Fig. 2, where a straight line fit of the data leads
to t×se0d=b−s1/ldlnse0d with b a constant. The slope of the
fit 1/l=2.86±0.05 is in excellent agreement with our previ-
ous determination ofl<0.34 from the exponential growth
of the amplitude factorestd,expsltd.

The magnitude and extent of spatial correlations can be
measured by using the site-site correlation functionGsl ,td
=kdrsx0,tddrsx0+ l ,tdl / kdrsx0,td2l. The magnitude of spatial
correlations increases in timeGsl ,t1d,Gsl ,t2d if t1, t2 for

times t1,t2, t×. However, as shown in Fig. 3, correlations
become progressively smaller for timest. t×. This again
demonstrates that the effect of having initially finite pertur-
bations is to introduce a characteristic timet×se0d marking
the typical time it takes for the system to depart from tangent
space (with the building-up of correlations) to nonlinear
evolution (uncorrelated errors). For times larger thant×, the
perturbation spatial correlations are progressively destroyed,
as can be seen from the decay of the correlationsGsl ,td in
Fig. 3. Further Fourier spectrum analysis[11] shows that
errors actually become indistinguishable from white noise.

III. KINETIC ROUGHENING PICTURE

In order to make a theoretical interpretation of our nu-
merical results, in particular the existence of scaling behav-
ior, we can resort to the Hopf-Cole transformation, first pro-
posed by Pikovsky and Politi for the actual Lyapunov vectors
[12,13], that allows us to link spreading of errors to nonequi-
librium surface growth. We find that the dynamics of finite
perturbations can also be seen as a kinetic roughening pro-
cess of the surface defined byhsx,td=lnudusx,tdu. This is a
very useful transformation that allows us to borrow some
well-known results in the field of nonequilibrium surface
growth. Indeed, Politi and Pikovsky[12,13] have shown that
errors in many extended systems lead to a surface growth
process in the universality class of KPZ[10].

Let us first consider the amplitude factor defined in Eq.
(3) and show that it is related to the average surface velo-
city. We can write udusx,tdu=expfhsx,tdg and thus estd
=expfs1/Ldox=1

x=Lhsx,tdg=expfh̄stdg. We then obtain that the
amplitude factor must grow asestd,e0 expslmaxtd, where
lmax is the largest Lyapunov exponent and corresponds in

this mapping to the surface velocity,h̄std=lmaxt+ h̄s0d
[12,13]. Direct measures of the average surface velocity(not
shown) are in excellent agreement with our above-discussed
estimations ofl. As an independent check, we have also
measured the largest Lyapunov exponent by standard tech-
niques[14,15].

FIG. 2. The same numerical results for the variances2std as
those in Fig. 1 are plotted in the main panel in log-log scale to show
the power-law behavior lns2std, t2b. The straight line has a slope
0.60 and is plotted to guide the eye. The inset shows the mean-
square fit of the characteristic time scalet×se0d obtained from the
saturation times of the amplitude factorestd. The slope of the
straight line is 1/l=2.86s5d.

FIG. 3. Time behavior of the correlation function for lattice sites
separated at different distancesl =8 (s), l =16 (h), l =64 (v), and
l =185 (x) in an array ofL=1024 coupled maps.
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Also the time behavior of the variance of the reduced
perturbations shown in Fig. 2 can be linked to surface scaling
properties. From the surface definitionhsx,td=lnudusx,tdu we

haves2st ,Ld=kexpf2ysx,tdgl, whereysx,td=hsx,td− h̄std. We
can now proceed and calculates2 explicitly by considering
the cumulant generating function of the stochastic variabley
given by Fssd=lnkexpsisydl [16], where i is the imaginary
unit. This generating function can be expanded in a power
series of the arguments and then evaluated ats=−2i to ob-
tain an exact expression for the variances2,

s2st,Ld = expSo
r=1

`

2r kkyrll
r!

D , s5d

where kkyrll are the cumulants ofy [16]. In general, no
closed simple formula exists for the cumulant of orderr of a
given variabley, but the first cumulants are given bykkȳll
=kȳl, kky2ll=ky2l−kȳl2, and kky3ll=ky3l−2ky2lkȳl+2kȳl3,
etc. [16]. In our case,kȳl=0 and the second cumulant
kky2ll=W2st ,Ld corresponds to the surface widthW2st ,Ld
=kfhsx,td− h̄g2l. To leading order, we have

s2st,Ld < expf2W2st,Ldg. s6d

Higher-order cumulants are also finite, but their contribution
to the series gets smaller asr increases. We have checked
numerically that including the third and fourth cumulants
shifts the exponent by less than 10%. Therefore, within
this somewhat crude approximation, Eq.(6), we expect
to have an estimation of theeffectivescaling exponent of
s2,expst2bd with less than a 10% error bar. A clarification is
now in order. For systems in which the largest Lyapunov
exponentl→0, one would expect to have larger crossover
times t×, so that higher-order cumulants may eventually be-
come relevant, yielding corrections to Eq.(6). In this sense,
the scaling picture has to be considered as approximate.
However, the scaling approach is consistent for hyperchaotic
systems, such as those we are interested in here, in which not
only is the leading Lyapunov exponent finite, but a series
of finite positive Lyapunov exponents exists whose number
increases with the system size.

The ansatz of a KPZ behavior for the surfaceh then im-
plies that the width should scale asWst ,Ld, tb for times
t, tssLd and saturates to a size-dependent value,Wst ,Ld
,La for t. tssLd, whereb anda are the growth and rough-
ness exponent, respectively, that are known to take the values
b=1/3 anda=1/2 for the KPZuniversality class in one
dimension[10,17]. This is consistent with the approximate

expst2/3d scaling observed in Fig. 2, bearing in mind the limi-
tation of the approximation(6). It is worth mentioning that
all the numerical results presented here are obtained for sys-
tem sizes such thatt×! ts, so that the existence oft× could be
clearly observed.

IV. CONCLUSIONS

We have studied the spatiotemporal dynamics of finite-
size perturbations in extended systems exhibiting chaos. We
have introduced what we call the amplitude factorestd in Eq.
(3) and showed that this quantity is directly related to the
maximal Lyapunov exponent and exhibits nice scaling prop-
erties. The amplitude factor allows us to remove in a simple
and self-consistent way the dominant growth component of
the perturbation at every time step, so that spatial correla-
tions can be determined more easily. At variance with infini-
tesimal perturbations, finite-size errors lead to a characteris-
tic time scale t×se0d signaling the departure of the finite
perturbation from the linear approach. For timest. t×, the
evolution is nonlinear and spatial correlations are destroyed.
We have found that the perturbation variance grows assstd
,expst2/3d, once the contribution of the largest growth rate is
removed. We have explained this behavior by representing
the error growth as a kinetically rough 1D KPZ surface.

The interpretation of the exponentially growing errors
dusx,td as a roughening surfacehsx,td=lnudusx,tdu has many
advantages since it allows us to translate the problem of ana-
lyzing deterministic chaotic fluctuations into the simpler
framework of kinetic roughening of the associated surface
hsx,td. The scale-invariant character of the surface fluctua-
tions leads to simple power-law behavior of the relevant
quantities that can be characterized by a few critical expo-
nents. As a byproduct, this leads in a rather simple way to an
estimation of the spatial extent of correlations at timet as
j, tz, where z=3/2 is thedynamic exponent of the KPZ
problem. Further results of practical application, including
the relevance for the predictability problem of the propaga-
tion of finite-size errors and bred vectors, as used in the
context of weather forecasting[7–9], will be published else-
where[11].
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